Development of PM2.5 source impact spatial fields using a hybrid source apportionment air quality model

نویسندگان

  • C. E. Ivey
  • H. A. Holmes
  • Y. T. Hu
  • J. A. Mulholland
  • A. G. Russell
چکیده

An integral part of air quality management is knowledge of the impact of pollutant sources on ambient concentrations of particulate matter (PM). There is also a growing desire to directly use source impact estimates in health studies; however, source impacts cannot be directly measured. Several limitations are inherent in most source apportionment methods motivating the development of a novel hybrid approach that is used to estimate source impacts by combining the capabilities of receptor models (RMs) and chemical transport models (CTMs). The hybrid CTM–RM method calculates adjustment factors to refine the CTMestimated impact of sources at monitoring sites using pollutant species observations and the results of CTM sensitivity analyses, though it does not directly generate spatial source impact fields. The CTM used here is the Community Multiscale Air Quality (CMAQ) model, and the RM approach is based on the chemical mass balance (CMB) model. This work presents a method that utilizes kriging to spatially interpolate source-specific impact adjustment factors to generate revised CTM source impact fields from the CTM–RM method results, and is applied for January 2004 over the continental United States. The kriging step is evaluated using data withholding and by comparing results to data from alternative networks. Data withholding also provides an estimate of method uncertainty. Directly applied (hybrid, HYB) and spatially interpolated (spatial hybrid, SH) hybrid adjustment factors at withheld observation sites had a correlation coefficient of 0.89, a linear regression slope of 0.83± 0.02, and an intercept of 0.14± 0.02. Refined source contributions reflect current knowledge of PM emissions (e.g., significant differences in biomass burning impact fields). Concentrations of 19 species and total PM2.5 mass were reconstructed for withheld observation sites using HYB and SH adjustment factors. The mean concentrations of total PM2.5 at withheld observation sites were 11.7 (± 8.3), 16.3 (± 11), 8.59 (± 4.7), and 9.2 (± 5.7) μg m for the observations, CTM, HYB, and SH predictions, respectively. Correlations improved for concentrations of major ions, including nitrate (CMAQ–DDM (decoupled direct method): 0.404, SH: 0.449), ammonium (CMAQ–DDM: 0.454, SH: 0.492), and sulfate (CMAQ– DDM: 0.706, SH: 0.730). Errors in simulated concentrations of metals were reduced considerably: 295 % (CMAQ–DDM) to 139 % (SH) for vanadium; and 1340 % (CMAQ–DDM) to 326 % (SH) for manganese. Errors in simulated concentrations of some metals are expected to remain given the uncertainties in source profiles. Species concentrations were reconstructed using SH results, and the error relative to observed concentrations was greatly reduced as compared to CTM-simulated concentrations. Results demonstrate that the hybrid method along with a spatial extension can be used for large-scale, spatially resolved source apportionment studies where observational data are spatially and temporally limited.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Overview of Model Inter-Comparison in Japan’s Study for Reference Air Quality Modeling (J-STREAM)

The inter-comparison of regional air quality models is an effective way to understand uncertainty in ambient pollutant concentrations simulated using various model configurations, as well as to find ways to improve model performance. Based on the outcomes and experiences of Japanese projects thus far, a new model inter-comparison project called Japan’s study for reference air quality modeling (...

متن کامل

Comparison Analysis of Particulate Matters in a Micro Environment

Different approaches of source apportionment of dust fractions have been reported world-over. Predicting source categories within receptor chemical profiles using regression and factor analysis using PCA has been reported to evaluate possible source/routes of air pollution mass. The present study is focused on the application of all three approaches to investigate higher degrees of significance...

متن کامل

Receptor model-based source apportionment of particulate pollution in Hyderabad, India.

Air quality in Hyderabad, India, often exceeds the national ambient air quality standards, especially for particulate matter (PM), which, in 2010, averaged 82.2 ± 24.6, 96.2 ± 12.1, and 64.3 ± 21.2 μg/m(3) of PM10, at commercial, industrial, and residential monitoring stations, respectively, exceeding the national ambient standard of 60 μg/m(3). In 2005, following an ordinance passed by the Sup...

متن کامل

Development and application of a robotic chemical mass balance model for source apportionment of atmospheric particulate matter

An advanced computational procedure is presented for the source apportionment (SA) of airborne particulate matter (PM) using chemical mass balance (CMB) receptor modeling. The so-called “Robotic Chemical Mass Balance” model (RCMB) minimizes personal judgment, by leading straight-forwardly to the bestefit combination of the source profiles that are included in a set of input data. RCMB involves ...

متن کامل

Photochemical grid model implementation and application of VOC , NO x , and O 3 source apportionment

For the purposes of developing optimal emissions control strategies, efficient approaches are needed to identify the major sources or groups of sources that contribute to elevated ozone (O3) concentrations. Source-based apportionment techniques implemented in photochemical grid models track sources through the physical and chemical processes important to the formation and transport of air pollu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015